Unsupervised Named Entity Transliteration Using Temporal and Phonetic Correlation
نویسندگان
چکیده
In this paper we investigate unsupervised name transliteration using comparable corpora, corpora where texts in the two languages deal in some of the same topics — and therefore share references to named entities — but are not translations of each other. We present two distinct methods for transliteration, one approach using an unsupervised phonetic transliteration method, and the other using the temporal distribution of candidate pairs. Each of these approaches works quite well, but by combining the approaches one can achieve even better results. We believe that the novelty of our approach lies in the phonetic-based scoring method, which is based on a combination of carefully crafted phonetic features, and empirical results from the pronunciation errors of second-language learners of English. Unlike previous approaches to transliteration, this method can in principle work with any pair of languages in the absence of a training dictionary, provided one has an estimate of the pronunciation of words in text.
منابع مشابه
H Indi and M Arathi to E Nglish M Achine T Ransliteration Using Svm
Language transliteration is one of the important areas in NLP. Transliteration is very useful for converting the named entities (NEs) written in one script to another script in NLP applications like Cross Lingual Information Retrieval (CLIR), Multilingual Voice Chat Applications and Real Time Machine Translation (MT). The most important requirement of Transliteration system is to preserve the p...
متن کاملOptimizing Transliteration for Hindi/Marathi to English Using only Two Weights
Machine transliteration has received significant research attention in last two decades. It is observed that Hindi to English and Marathi to English named entity machine transliteration is comparably less studied. Currently, research work in this domain is carried out by using grapheme based statistical approaches. But, to achieve better accuracy for the transliteration, an adequate bilingual t...
متن کاملA Hybrid Approach of English- Hindi Named-entity Transliteration
In recent years, machine transliteration has gained a center of attention for research. Both machine translation and transliteration are important for e-governance and web based online multilingual applications. As machine translation translate source language to target language which results in wrong translation for named entities. Named entities are required to be translated with preserving t...
متن کاملMultilingual Transliteration Using Feature based Phonetic Method
In this paper we investigate named entity transliteration based on a phonetic scoring method. The phonetic method is computed using phonetic features and carefully designed pseudo features. The proposed method is tested with four languages – Arabic, Chinese, Hindi and Korean – and one source language – English, using comparable corpora. The proposed method is developed from the phonetic method ...
متن کاملWeakly Supervised Named Entity Transliteration and Discovery from Multilingual Comparable Corpora
Named Entity recognition (NER) is an important part of many natural language processing tasks. Current approaches often employ machine learning techniques and require supervised data. However, many languages lack such resources. This paper presents an (almost) unsupervised learning algorithm for automatic discovery of Named Entities (NEs) in a resource free language, given a bilingual corpora i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006